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The use of spoken and written language is a fundamental human capacity. Individual dif-
ferences in reading- and language-related skills are influenced by genetic variation, with
twin-based heritability estimates of 30 to 80% depending on the trait. The genetic archi-
tecture is complex, heterogeneous, and multifactorial, but investigations of contributions
of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a
multicohort genome-wide association study (GWAS) of five traits assessed individually
using psychometric measures (word reading, nonword reading, spelling, phoneme aware-
ness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y.
We identified genome-wide significant association with word reading (rs11208009,
P= 1.098 × 1028) at a locus that has not been associated with intelligence or educational
attainment. All five reading-/language-related traits showed robust SNP heritability,
accounting for 13 to 26% of trait variability. Genomic structural equation modeling
revealed a shared genetic factor explaining most of the variation in word/nonword reading,
spelling, and phoneme awareness, which only partially overlapped with genetic variation
contributing to nonword repetition, intelligence, and educational attainment. A multivari-
ate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power
for follow-up investigation. Genetic correlation analysis with neuroimaging traits identi-
fied an association with the surface area of the banks of the left superior temporal sulcus, a
brain region linked to the processing of spoken and written language. Heritability was
enriched for genomic elements regulating gene expression in the fetal brain and in chro-
mosomal regions that are depleted of Neanderthal variants. Together, these results provide
avenues for deciphering the biological underpinnings of uniquely human traits.

reading j language j genome-wide association study j meta-analysis

The processing and production of complex spoken and written language are capacities
that appear to be distinct to our species (1). Such skills have become fundamental for
day-to-day life in modern society. Decades of family and twin studies have revealed
substantial genetic components contributing to individual variation in reading- and
language-related traits as well as to susceptibility to associated disorders (2). A recent
meta-analysis integrated available data on these skills from 49 twin studies, with a total
sample size of 38,000 children and adolescents aged 4 to 18 y. The meta-analysis
yielded heritability estimates of 66% for word reading (meta-analysis of 48 studies),
80% for spelling (15 studies), and 52% for phoneme awareness (the ability to identify
and manipulate individual sounds of spoken words; 13 studies) and suggested greater
genetic influences on reading-related abilities than language-related measures (twin her-
itability of 34%; meta-analysis of 10 studies with measures on receptive and expressive
vocabulary, oral language, and naming abilities) (3).

Significance

Our unique capacities for spoken
and written language are
fundamental features of what
makes us human, yet the
biological bases remain largely
mysterious. We present a large-
scale well-powered genome-wide
association study meta-analysis of
individual differences in reading-
and language-related skills (word
reading, nonword reading,
spelling, phoneme awareness,
and nonword repetition) in tens of
thousands of participants. The
findings prompt a major
reevaluation of prior literature
claiming candidate gene
associations in much smaller
samples. Moreover, we use the
novel genetic data as windows
into multiple aspects of the
biology of these important
abilities, revealing molecular links
to individual differences in
neuroanatomy of language-
related brain areas and enriched
heritability in archaic deserts of
the human genome as well as in
fetal brain enhancer regions.
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Linkage mapping and targeted candidate gene studies have
reported associations of SNPs and/or genetic loci with reading-
and language-related traits as well as with disorders such as dyslexia
and developmental language disorder (DLD), which encompasses
the older definition of specific language impairment (SLI) (4).
However, replication efforts have been met with limited success
(4). Moreover, for the language sciences, in contrast to other areas
of human genetics, there have so far been few genome-wide associ-
ation studies (GWASs), in which SNPs at millions of points across
the genome are systematically screened for association with the trait
of interest in large datasets comprising thousands of individuals
(2). GWAS efforts are beginning to identify SNPs that show
genome-wide significant associations with reading- and language-
related traits: rs7642482 near ROBO2 associated with expressive
vocabulary in infancy (5); rs17663182 within MIR924HG with
rapid automatized naming of letters (6); and rs1555839 near
RPL7P34 with rapid automatized naming and rapid alternating
stimulus, deficits of which are often implicated in dyslexia (7).
Nonetheless, insights into the genomic underpinnings of these
types of skills from GWAS approaches have thus far been limited,
which may reflect low power due to the relatively small sample
sizes of the cohorts, such that the majority of genetic variance
remains unexplained. Sample sizes have remained limited because
of the labor-intensive assessment methods required for phenotypic
characterization of reading- and language-related traits, which are
difficult or even impossible to replace with simple questionnaires.
Yet, well-powered GWAS efforts that characterize the molecular
genetic variation involved in reading- and language-related traits
have the potential to provide novel perspectives on the biological
bases and origins of human cognitive specializations (8).
Here, we present large-scale GWAS meta-analyses of a set of

reading- and language-related traits, measured with psychometric
tools. We captured variation across the phenotypic spectrum,
extending beyond disorder. Our study focused on traits assessed
using continuous measures in multiple cohorts from the interna-
tional GenLang network (https://www.genlang.org/) together
with several public datasets that have data available for the relevant
phenotypes matched to genome-wide genotype information. Five
quantitative traits were identified for which phenotype data could
be aligned across different cohorts to yield sufficiently large sample
sizes for GWAS: word reading, nonword reading, spelling, pho-
neme awareness, and nonword repetition. Univariate GWAS
meta-analyses were performed for each of the phenotypes to iden-
tify genetic variation influencing these traits and to model genetic

overlaps between them. For comparative purposes, a GWAS meta-
analysis for performance intelligence quotient (IQ) was also per-
formed in the same dataset. Together with publicly available
GWAS summary statistics from prior studies of cognitive perfor-
mance and educational attainment, these data were used to study
genetic relationships between reading- and language-related traits,
IQ, and educational attainment. A multivariate approach allowed
us to optimize the power of GWAS meta-analysis for functional
follow-ups, giving insights into the tissues, cell types, brain regions,
and evolutionary signatures involved.

Results

Meta-Analyses of Quantitative Reading- and Language-Related
Traits in 22 Cohorts.Our study focused on five quantitative read-
ing- and language-related traits: word reading accuracy, nonword
reading accuracy, spelling accuracy, phoneme awareness, and
nonword repetition accuracy (Table 1). These traits are thought
to tap into a number of underlying processes involved in written
and spoken language. For example, nonword reading relies
heavily on basic decoding skills [translating graphemes one by
one into phonemes (9)], while spelling utilizes lexical and ortho-
graphic knowledge [understanding of permissible letter patterns
and how they are arranged in specific words (10)]. Phoneme
awareness measures the ability to distinguish and manipulate the
separate phonemes in spoken words (11). Nonword repetition
tasks tap into speech perception, phonological short-term mem-
ory, and articulation (12). A total of 22 cohorts aggregated by the
GenLang Consortium combined with several publicly available
datasets provided data for one or several of these traits (Datasets
S1–S3 and SI Appendix, Figs. S1 and S2). The cohorts connected
in the GenLang network either were originally ascertained through
a proband with a language/reading disorder (DLD/SLI or dyslexia)
or were sampled from the general population; all cohorts include
quantitative phenotypic data gathered via validated psychometric
tests as well as genome-wide genotype data from the tested individ-
uals. Some of the samples are birth cohorts, and some involve fam-
ily or twin designs. The phenotype data were collected across an
array of different ages, test instruments, and languages (primarily
English but also, Dutch, Spanish, German, French, Finnish, and
Hungarian). We reduced heterogeneity of assessment age by
excluding individuals over 18 y of age (except for three cohorts)
(SI Appendix, Extended Methods) and where phenotype data were
available from the same participant at multiple ages, by choosing

Table 1. Phenotypes and sample sizes of the GWAS meta-analyses

Trait Phenotype description

Meta-analysis
total sample

Meta-analysis
European ancestry only

No. of
cohorts

No. of
individuals

No. of
cohorts

No. of
individuals

Word reading Number of correct words read aloud from a list
in a time-restricted or unrestricted fashion

19 33,959 18 27,180

Nonword* reading Number of nonwords read aloud correctly from a
list in a time-restricted or unrestricted fashion

13 17,984 12 16,746

Spelling Number of words correctly spelled orally or in
writing after being dictated as single words or
in a sentence

15 18,514 14 17,278

Phoneme awareness Number of words correctly altered in phoneme
deletion/elision and spoonerism tasks

12 13,633 11 12,411

Nonword* repetition Number of nonwords or phonemes repeated
aloud correctly

10 14,046 10 12,828

*A nonword is a group of phonemes that looks or sounds like a word, obeys the phonotactic rules of the language, but has no meaning.
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the age that matched best with the assessment ages of the largest
cohort(s). We limited the heterogeneity introduced by different
test instruments by only including those that measured the pheno-
types described in our analysis plan (SI Appendix, Supplemental
Notes) and in cases where data from more than one test instru-
ment were available, by selecting the test instrument that was used
by the largest number of cohorts.
We evaluated whether, despite efforts to minimize this, het-

erogeneity related to age and/or use of different test instruments
remained in our data. To do so, we generated GWAS meta-
analysis results for word and nonword reading stratified by age or
test instrument (Dataset S4). We tested those data for genetic cor-
relations using linkage disequilibrium score regression (LDSC)
(13), determining to what extent the same common genetic varia-
tion is accounting for phenotypic variability in the different strati-
fied GWAS datasets (detailed in SI Appendix, Supplemental Notes).
There was limited heterogeneity of GWAS meta-analysis results, as
also evident in the Cochran Q statistics (SI Appendix, Fig. S3) and
LDSC ratios (Dataset S4) for all traits except nonword repetition.
We also assessed effects of sex, observing high genetic correlations

for female- and male-only subsets (SI Appendix Supplemental Notes,
Dataset S4). Given the lack of genetic heterogeneity, the remainder
of the study involved analyses of the full non-stratified dataset, to
ensure largest available sample size and maximal power.

A Genome-Wide Significant Locus Associated with Word Reading.
We performed univariate GWAS meta-analyses for the reading-/
language-related traits in the full GenLang dataset as follows. For
each phenotype, associations between SNPs and the quantitative
trait were calculated in every cohort separately, then combined
into a meta-analysis for that phenotype. This yielded five separate
univariate GWAS datasets, one for each trait. For evaluating sta-
tistical significance of SNP associations, we determined an appro-
priate threshold that was adjusted not only for genome-wide
screening (P = 5 × 10�8), but also for multiple testing based
on the correlation structure of our five reading-/language-
related traits, as estimated using phenotypic Spectral Decom-
position (phenoSpD; Materials and Methods). The significance
threshold for assessing the GWAS meta-analysis results was
thus set to P = 5 × 10�8/2.15 independent traits = 2.33 ×
10�8. We identified a genome-wide significant locus associated
with word reading (rs11208009 C/T on chromosome 1, P =
1.10 × 10�8, beta = 0.048, SE = 0.008) (SI Appendix, Fig.
S5). Notably, rs11208009 has not shown association with general
cognitive performance or educational attainment, while other
SNPs in linkage disequilibrium (LD) with rs11208009 (r2 > 0.6)
have been associated with triglyceride and total cholesterol levels
in blood in previous GWAS (Dataset S5). Three genes are
located in the vicinity of rs11208009 and SNPs in LD (r2 >
0.6): DOCK7, encoding a guanine nucleotide exchange factor
important for neurogenesis (14); ANGPTL3, which encodes a
growth factor specific for the vascular endothelium that is
expressed specifically in the liver (15); and USP1, encoding a deu-
biquitinating enzyme specific for the Fanconi anemia pathway
(16). The associated locus harbors an expression quantitative trait
locus regulating DOCK7 and ATG4C [another nearby gene that
encodes an autophagy regulator (17)] in the cerebellum and
DOCK7, ATG4C, and USP1 in blood (Dataset S6). Genome-
wide significant loci were not identified for the other traits.
Dataset S7 lists all results with P < 1 × 10�6.

Traits Related to Written and Spoken Language Are Highly
Correlated at the Genetic Level. The individual effect size of
our genome-wide significant hit is small, as is typical for

genetically complex traits. We went on to make use of the com-
plete GWAS signal considered in aggregate across the genome
to gain insights into the genetic architecture of the reading-/
language-related traits as well as relationships with other aspects
of human biology. First, for each phenotype, we estimated
SNP-based heritability: the proportion of trait variability
explained by the SNPs included in the GWAS. All five traits
showed significant SNP-based heritability, with LDSC-based
estimates ranging from 0.13 for nonword repetition to 0.26 for
nonword reading (Dataset S4), indicating that the captured
common genetic variation accounts for a substantive proportion
of the phenotypic variance. These observations allowed for
follow-up analyses that are dependent on significant SNP herita-
bility, including estimates of genetic correlations: a measure that
quantifies the overall genetic similarity between two complex
traits. Pairwise genetic correlation analyses showed significant
overlap among the reading- and language-related traits (Fig. 1A
and Dataset S4). Genetic correlation estimates were especially
high for word reading, nonword reading, spelling, and phoneme
awareness, ranging from 0.96 (SE = 0.07) to 1.06 (SE = 0.07).

Prior literature has shown phenotypic correlations of reading-
and language-related traits with general cognitive performance
and educational attainment. Most cognitive assessments depend
on a combination of verbal and nonverbal tests. To enable the
investigation of genetic overlaps between nonverbal cognitive
performance and reading- and language-related traits while
closely matching the sample characteristics of our study, we
carried out a GWAS meta-analysis of performance IQ in the
GenLang network (n = 18,722) (SI Appendix, Figs. S1–S3).
Only nonverbal subtests of general intelligence tests were used
in this analysis (Dataset S1). Summary statistics were also
obtained from another three sources: 1) genome-wide studies
of full-scale IQ (based on both verbal and nonverbal tasks; n =
257,828) and educational attainment (n = 766,345) by the
Social Science Genetic Association Consortium (18); 2) a GWAS
by subtraction study that investigated the noncognitive abilities
involved in educational attainment (n = 510,795) (19); and 3) a
recent GWAS analysis of school grades in the Danish Integrative
Psychiatric Research (iPSYCH) cohort (n = 30,982) that used a
decomposition analysis to identify genetic associations with dis-
tinct domains of performance (20).

The five GenLang reading-/language-related traits showed
moderate to strong positive genetic correlations with full-scale
IQ (range = 0.52 to 0.77), educational attainment (range =
0.54 to 0.68), and school performance (range = 0.54 to 0.81)
(Fig. 1A and Dataset S8). Interestingly, genetic correlations with
full-scale IQ were substantially higher for word reading (95% CI =
0.70 to 0.85) than nonword reading (95% CI = 0.50 to 0.68),
likely reflecting the importance of reading skills for verbal tests
of cognition. Genetic correlations of reading-/language-related
traits with performance IQ (range = 0.20 to 0.35) were much
lower than those for full-scale IQ, and the 95% CIs did not
overlap. Indeed, only word reading showed a significant genetic
correlation with performance IQ. These results indicate that
reading-/language-related traits and IQ are at least partly based
on distinct genetic factors. Significant trait-specific genetic corre-
lations were observed for components 2 to 4 of the Danish
school grade decomposition analysis (20). Component 2, reflect-
ing relatively better school grade performance in language than
mathematics (as compared with peers), was positively correlated
with both GenLang reading traits. Component 3, reflecting
relatively better school grade performance in oral than in
written examinations, showed significant negative correlations
with phoneme awareness and spelling. Lastly, component 4,
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reflecting relatively better school grade performance in Danish
than in English, showed significant negative correlation with
nonword repetition. The noncognitive abilities involved in edu-
cational attainment identified in the GWAS by subtraction study
(19) showed small but significant positive genetic correlations
with word reading, nonword reading, and nonword repetition.
Genomic structural equation modeling (GenomicSEM) (21)

is a method that can use GWAS results to fit and compare
models describing genetic overlaps between multiple pheno-
types to further understand how traits are related. We used this
method to model the shared genetic architecture of the five
reading- and language-related traits together with performance
IQ, full-scale IQ, and educational attainment (Dataset S9).
Exploratory factor models with one to four factors were fitted
to the data, of which the three-factor model explained the
majority of the variance. The three-factor model was followed
up using confirmatory factor analysis in GenomicSEM. In the
final model (Fig. 1B), the first factor explains variation in non-
word reading, spelling, phoneme awareness, word reading, and
full-scale IQ. For the first three traits, there is no evidence for
additional genetic influences, suggesting high genetic similarity.
The second factor explains additional variation in full-scale IQ
and is also related to performance IQ and educational attain-
ment. The third factor explains variation in nonword repeti-
tion, word reading, and educational attainment. Factors 1 and
3 are highly correlated, indicating that the genetic architecture
underlying word reading does not differ much from nonword
reading, spelling, and phoneme awareness. Nonword repetition,
on the other hand, is genetically more distinct, as indicated by
evidence for specific genetic influences not captured by the
model. Specific genetic influences were also evident for

full-scale IQ and educational attainment. Thus, although read-
ing- and language-related traits show genetic overlaps with full-
scale IQ and educational attainment, the model indicates that
these traits also have unique unshared components, in line with
genetic correlation estimates that are lower than one.

Limited Evidence for Genes Previously Reported in Reading-/
Language-Related Traits and Disorders. The number of previ-
ous GWAS on reading-/language-related traits and disorders is
small (Dataset S10), and these have identified very few associa-
tions exceeding genome-wide significance. In those prior studies, a
total of 48 independent SNPs met a less stringent threshold of
P < 1 × 10�6 in the respective GWAS. We ran lookups of each
of those SNPs in our GenLang GWAS meta-analysis results
(Dataset S10). Where SNP associations passed a threshold adjusted
for multiple testing of 48 SNPs and 2.15 independent GenLang
traits (P < 4.84 × 10�4), we then reran the association analyses
after exclusion of the original cohort(s) in which the association was
first identified to evaluate independent effects beyond those of the
respective earlier study. According to these criteria, only one SNP,
rs1555839, previously associated with rapid automatized naming in
the Genes, Reading, and Dyslexia (GRaD) cohort (7) yielded a sig-
nificant signal in the remainder of the GenLang cohorts, showing
association with spelling (P = 3.33 × 10�4). This SNP is one of
five SNPs that reached the threshold for genome-wide significance
in the original GWAS of the GRaD cohort.

Some 20 genes have been described in the literature as candi-
date genes for reading-/language-related traits and disorders
based on a range of mapping approaches and have been the
focus of much of the prior published research in this area (4).
Dataset S11 gives gene-based P values from our GenLang
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Fig. 1. Reading- and language-related traits
have a shared genetic architecture that is
largely independent of performance IQ. (A)
Genetic correlations (rg) among the reading-
and language-related traits estimated with
LDSC. Estimates are capped at one. Full LDSC
results are reported in Dataset S4. In addition,
genetic correlations are given between the
GenLang traits and 1) performance IQ (using
GenLang cohorts only); 2) educational attain-
ment (EA; n = 766,345) and full-scale IQ (n =
257,828) (18); 3) noncognitive abilities involved
in EA, resulting from a recent GWAS by sub-
traction study (n = 510,795) (19); and 4) com-
ponents associated with distinct performance
domains identified used a decomposition
analysis of Danish school grades (n = 30,982)
(20). Full results can be found in Dataset S8.
*Significant genetic correlation after correc-
tion for 18.28 independent comparisons (P <
2.74 × 10�3); **P < 2.74 × 10�4; ***P < 2.74 ×
10�5. (B) Three-factor model fitted to the Gen-
Lang summary statistics for word reading,
nonword reading, spelling, phoneme aware-
ness, nonword repetition, and performance
IQ and to published GWAS summary statistics
for full-scale IQ and EA (18) using Genomic-
SEM (21). Black and gray paths represent factor
loadings with P < 0.05 and P > 0.05, respec-
tively. Standardized factor loadings are shown,
with SE in parentheses. The subscript g repre-
sents the genetic variables; the u variables rep-
resent the residual genetic variance not
explained by the models. Unstandardized
results and model fit indices are reported in
Dataset S9.
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GWAS meta-analysis, calculated by Multi-marker Analysis of
GenoMic Annotation (MAGMA) (22), for each of these genes.
Variation in one, namely DCDC2, showed association with
nonword reading that passed the significance threshold for mul-
tiple testing of 20 genes and 2.15 independent GenLang traits
(P < 0.0012). DCDC2 was originally identified in a linkage
region for dyslexia susceptibility, and SNPs in and near this
gene were subsequently associated with dyslexia in candidate
gene studies (23), although some investigations, including a
meta-analysis of seven studies, failed to support this (24). No
single candidate SNP highlighted in prior studies of DCDC2,
nor in any other candidate gene, was significantly associated with
any traits in the GWAS meta-analysis results after correction for
testing of 54 SNPs and 2.15 independent GenLang traits (P < 4.
31 × 10�4) (Dataset S11). These null findings highlight the
importance of large-scale studies for robust identification of com-
mon DNA variation associated with reading-/language-related
traits and disorders and warrant a reevaluation of the contribu-
tions of candidate genes that are prominent from prior literature.

A Multivariate GWAS Analysis of GenLang Traits Maximizes
SNP Heritability. To improve the power of our GWAS meta-
analysis for follow-up analyses, we took advantage of the high
genetic correlations between the traits by performing a multivari-
ate GWAS analysis of word reading, nonword reading, spelling,
and phoneme awareness with the Multi Trait Analysis of GWAS
(MTAG) method (25). This approach improves the effect esti-
mates of univariate GWAS results per SNP by incorporating
information from the other genetically correlated traits. Although
MTAG generates output for each primary input trait, these were
extremely similar as a consequence of the particularly high genetic
correlations between the traits. Hence, the multivariate results for
word reading were used for all follow-up analyses because the
univariate word reading GWAS meta-analysis has the largest sam-
ple size (27,180 for the European ancestry analysis compared
with 12,411 to 17,278 for the other three traits). Although no
individual SNP reached genome-wide significance in this multi-
variate analysis (SI Appendix, Fig. S4), the approach improved
power for follow-up analyses in three ways: 1) by incorporating
all available data from the different traits without increasing mul-
tiple testing burden; 2) by reducing error variance and thereby,
increasing the proportion of phenotypic variability captured by
genetic variations, with SNP-based heritability that was higher
than any of the univariate estimates with a smaller SE (0.29, SE
= 0.02); and 3) because joint analysis of the different traits maxi-
mized the effective sample size of the dataset. Indeed, MTAG
estimated the GWAS equivalent sample size of the multivariate
results as 41,783 compared with 27,180 for the corresponding
univariate results. These multivariate GenLang GWAS results
were used for follow-up analyses utilizing not only genetic corre-
lation approaches, but also other genome-based methods, such as
gene property analysis and heritability partitioning, further
explained below.

Assessing Links to Genetics of Neuroanatomical Variation in
Reading-/Language-Related Circuitry. The neurobiological cir-
cuitry involved in spoken and written language has been exten-
sively investigated in prior literature, from pioneering postmortem
studies of brain lesions through to the noninvasive structural and
functional neuroimaging research that is now standard for the
field (26, 27). Notably, multiple studies have identified relation-
ships between measures of neuroanatomical features and perfor-
mance on reading-/language-related tasks through analyses of
developmental changes, of individual differences, and of relevant

disorders (28, 29). At the same time, a growing number of large-
scale GWAS efforts have reported robust relationships between
common DNA variation and individual differences in multiple
aspects of human neuroanatomy, including brain volumes, sur-
face area and thickness of different cortical regions, and white
matter microstructure, among others (30, 31). The availability of
GWAS data from behavioral/cognitive phenotypes and from
magnetic resonance imaging (MRI)-based measures of neuro-
anatomy makes it possible to determine genetic overlaps between
brains and behavior, even when the study cohorts are inde-
pendent (31, 32). Here, we applied this strategy to assess genetic
relationships between reading-/language-related measures and neu-
roanatomical variation, as follows. First, we performed a literature
review to select structural neuroimaging traits that 1) encompass
brain regions and white matter tracts with known links to aspects
of reading and language and 2) have been investigated with
GWAS in the large UK Biobank resource (Materials and
Methods). This yielded 58 structural neuroimaging traits, includ-
ing surface-based morphometry (surface area and thickness) (SI
Appendix, Fig. S6) phenotypes and diffusion tensor imaging
(mean and weighted mean fractional anisotropy) (SI Appendix,
Fig. S7) results. Second, as many of these brain-based phenotypes
were significantly correlated with each other, genetic correlations
among their summary statistics were used to calculate the number
of independent traits for multiple testing correction. Third, we
performed genetic correlation analyses between the multivariate
GenLang GWAS results and the 58 neuroimaging traits to iden-
tify genetic overlaps. One neuroimaging trait showed significant
genetic correlation with the multivariate GenLang results (P <
0.05/24.85 independent traits = 2.01 × 10�3): the surface area of
the banks of the superior temporal sulcus (STS) of the left hemi-
sphere (rg = 0.21, SE = 0.06) (Fig. 2 and Dataset S12). This
finding suggests the existence of shared genetic factors that con-
tribute both to left STS surface area and to reading-/language-
related skills, albeit without identifying which SNPs underlie the
relationship. Functional MRI studies have linked this region to
different aspects of written and spoken language processing
(33–36). To investigate further whether the five different reading-
and language-related traits show similar or diverse genetic correla-
tions for banks of the left STS, we went on to specifically assess
the results from the original univariate GenLang GWAS
meta-analyses, finding consistent genetic correlations (range =
0.18 to 0.23) (Dataset S12).

Genetic Correlation with Traits from the UK Biobank and
Brain-Related Traits from the LD Hub. Next, we assessed
genetic correlations of our multivariate GWAS results with 20
cognitive, education, neurological, psychiatric, and sleeping-
related traits and 515 additional UK Biobank traits using LD
Hub. To further investigate overlaps with and differences from
IQ, genetic correlations between these 535 traits and the pub-
lished GWAS summary statistics for full-scale IQ (18) (n =
257,828) were obtained as well. A total of 143 traits showed
significant genetic correlations with the multivariate GenLang
GWAS results after correction for multiple testing [P < 0.05/
(535 × 2) = 4.67 × 10�5] (Dataset S13), while 245 traits were
genetically correlated with full-scale IQ; 135 traits showed sig-
nificant correlations with both our multivariate GWAS and
full-scale IQ. Traits with strong genetic correlations were related
to education, eyesight, chronotype, well-being, lifestyle, physical
health and exercise, and socioeconomic status. Representative
traits are plotted in Fig. 3. Cognitive and education-related traits
showed higher genetic correlations with full-scale IQ than with
the multivariate GenLang GWAS data. Several psychiatric and
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well-being traits showed significant (negative) genetic correla-
tions with full-scale IQ but not with our multivariate GWAS:
for example, depressive symptoms; cross-disorder susceptibility
(from the Psychiatric Genomics Consortium GWAS); and tense,
hurt, and nervous feelings. In contrast, several traits related to
physical health and lifestyle showed larger genetic correlations
with the multivariate GenLang GWAS results than with full-
scale IQ, including body mass index, reduced alcohol intake as a
health precaution, and usual walking pace.

Analysis of Genomic Annotations Related to Human Evolution.
Writing and reading are relatively recent cultural innovations,
but multiple lines of evidence indicate that the relevant skills,
especially those involved in decoding as assessed here, are based
on our capacities for spoken language, which emerged through
biological evolution along the lineage that led to humans
(37, 38). As noted above, our multivariate GWAS captured
common DNA variation accounting for a substantial proportion
of interindividual variability in reading-/language-related traits
within our study populations. We went on to test in aggregate
whether there were overlaps between the genomic regions driv-
ing this association signal and regions involved in aspects of
human evolution over a range of timescales. To do so, we used
LDSC heritability partitioning (39), a method that uses GWAS
results to investigate whether common DNA variants in a certain
set of genomic regions, named an annotation, explain a larger pro-
portion of the SNP-based heritability of the trait than is expected
based on the size of that annotation. Building on prior work on
evolution of human brain structure (40), we studied five annota-
tions reflecting different aspects of human evolution spanning
periods from 30 Mya to 50,000 y ago (SI Appendix, Fig. S8). The
tested annotations included human gained enhancers active in
fetal and adult brain tissue, ancient selective sweep regions, Nean-
derthal introgressed variants, and archaic introgression deserts
(details are in SI Appendix, Extended Methods). The latter two
annotations relate to admixture events between Homo sapiens and
Neanderthal populations that took place when the different homi-
nins encountered each other outside Africa some 50,000 to
60,000 y ago, with the consequent gene flow leaving remnants
(introgressed fragments) that can be detected in the genomes of
living humans. Archaic deserts are long stretches in the human
genome that, despite these admixture events, are significantly
depleted for Neanderthal alleles in living humans, possibly due to
critical functions of the genetic loci in H. sapiens and intolerance
to gene flow (41). We observed significantly enriched heritability
for archaic deserts, which was robust to multiple testing correc-
tion for analysis of five annotations (P < 0.01) (Dataset S14).

Thus, our results suggest that common DNA variation in
archaic deserts makes a larger contribution to individual differ-
ences in reading-/language-related traits within present-day pop-
ulations than expected by chance.

Functional Enrichment Using Heritability Partitioning and
MAGMA Gene Property Analysis. We next investigated whether
regions of the genome with tissue-specific functions are involved
in reading-/language-related traits, again using LDSC heritability
partitioning. We used annotations reflecting chromatin signatures
from a broad range of tissues, as most variants identified in
GWAS are located outside coding regions and are often found
enriched in tissue-specific functional regions of the genome, such
as promoters, enhancers, and regions with open chromatin. After
correction for testing of 489 annotations (P < 1.02 × 10�4), three
annotations showed significant heritability enrichment: histone-3
lysine-4 monomethylation (H3K4me1) in two fetal brain samples
and the adult brain germinal matrix (SI Appendix, Fig. S9 and
Dataset S14). H3K4me1 is considered a marker for enhancer
regions. These results indicate that SNPs associated with reading-/
language-related traits are overrepresented in fetal brain enhancers.

Next, we used MAGMA gene property analysis (22) to study
whether the multivariate GenLang GWAS results were enriched
in a specific tissue or brain cell type using tissue-specific and cell
type–specific gene expression data in Functional Mapping and
Annotation (FUMA) (42, 43). As MAGMA corrects for average
expression, each comparison can only answer the question of
whether the tissue or cell type is more related to the multivariate
GWAS results than the average of the tissues or cell types in the
dataset. After correction for 83 tissues (P < 6.02 × 10�4), no rela-
tion was found with tissue-specific gene expression patterns of
adult tissues from the Genotype-Tissue Expression (GTEx) project
and brain tissues of a specific (developmental) time from Brain-
span (Dataset S15 and SI Appendix, Fig. S10). In the cell
type–specific gene expression analysis, three single-cell RNA-
sequencing datasets of embryonic, fetal, and adult brain tissue
were used. After correction for 142 cell types (P < 3.52 × 10�4),
the multivariate GWAS results were significantly associated with
one of the mature neurons from the fetal dataset: red nucleus neu-
rons (beta = 0.24, SE = 0.07) (Dataset S15 and SI Appendix, Fig.
S11). This observation could reflect an association with this spe-
cific nucleus or with the higher maturity of the neurons compared
with the other cell types in the fetal dataset. The red nucleus is a
large structure in the ventral midbrain that is part of the olivocere-
bellar and cerebello–thalamo–cortical systems. It plays roles in
locomotion and nonmotor behavior in various animals, and in
humans, it might also play a role in higher cortical functions (44).

Discussion

We performed GWAS meta-analysis of five quantitative
reading- and language-related traits (word reading, nonword
reading, spelling, phoneme awareness, and nonword repetition)
in sample sizes (up to ∼34,000 participants) that are substan-
tially larger than previous genetic analyses of reading and/or lan-
guage skills assessed with neuropsychological tools (prior GWAS
efforts with maximal sizes of n = 1,331 to 10,819) (5–7, 45–47).
We identified genome-wide significant association for word reading
(rs11208009 at chromosome 1, P = 1.10 × 10�8), highlighting
DOCK7, ATG4C, ANGPTL3, and USP1 as potential candi-
dates for involvement in this trait. Other SNPs from the locus
have been associated with triglyceride and cholesterol levels (48)
but may represent an independent association signal. Robust
SNP-based heritabilities were observed, ranging from 0.13 for

*
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0
-0.05
-0.1
-0.15
-0.20
-0.25

rg

Fig. 2. The multivariate GenLang GWAS results show significant genetic
correlation with the cortical surface area around the left STS. Genetic corre-
lations (rg) were estimated with LDSC. Included traits are 58 structural
brain imaging traits from the UK Biobank selected based on known links of
regions and circuits with language processing. The results of the 22 cortical
surface areas are shown; gray areas were not included in the analysis.
Full results can be found in Dataset S12 and SI Appendix, Figs. S6 and S7.
*Significant genetic correlation after correcting for 24.85 independent brain
imaging traits (P < 2.01 × 10�3).
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nonword repetition to 0.26 for nonword reading. These SNP-
based heritabilities are similar in magnitude to those of the
related trait dyslexia (estimates range from 0.15 to 0.25 on a
liability scale) (49, 50); psychiatric traits, such as Attention Defi-
cit Hyperactivity Disorder symptoms, in adults (0.22) (51); and
brain imaging traits, such as cortical surface area (range from 0.12
to 0.33 for different regions) (52) and cortical thickness (range
from 0.08 to 0.26) (52). They are larger than that of psychiatric
traits, such as major depression (0.08) (53) and alcohol depen-
dence (0.09) (54). So, despite highlighting the need for larger
sample sizes to identify loci that individually exceed genome-wide
significance, our GenLang GWAS already allowed for multiple
informative follow-up analyses based on the full dataset of com-
mon variants across the genome, yielding findings that connect to
neuroanatomical variation, human evolutionary history, and other
aspects of the biology of spoken and written language.
Our work shows overlapping contributions of common

genetic variants to individual differences in reading-/language-
related and cognitive traits. Such overlaps are evident both
from genetic correlation analyses and from the three-factor

structural equation model, in which one factor explains most of
the variation in word reading, nonword reading, spelling, and
phoneme awareness. This is in line with the widespread pleiot-
ropy found between many aspects of cognitive functioning,
including language, reading, mathematics, and general cogni-
tive ability (6, 55). We note that summary statistics from the
current investigation have also been used to investigate genetic
overlaps with self-report of dyslexia diagnosis in an independent
GWAS by 23andMe (∼52,000 cases), yielding substantial nega-
tive genetic correlations between GenLang quantitative traits
and dyslexia status (e.g., �0.71 for word reading, �0.75 for
spelling) as reported by Doust et al. (50). Yet, nonword repeti-
tion, IQ, and educational attainment have, at least in part, dif-
ferent genetic foundations, as reflected in the residual genetic
variation contributing to these traits that is not captured by the
model. These findings are consistent with multiple behavioral
studies showing a distinction between nonword repetition and
other reading- and language-related traits (56). They are also
in line with recent structural equation modeling of genetic
trait interrelatedness for different reading- and language-related
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Fig. 3. Genetic correlation results of the mul-
tivariate GenLang GWAS analysis with com-
parisons with those for the largest published
GWAS of full-scale IQ in LD Hub. Summary sta-
tistics for full-scale IQ (n = 257,828) were
obtained from the Social Science Genetic
Association Consortium (18). Genetic correla-
tions between the multivariate GenLang
results (blue–green), full-scale IQ (purple), and
traits in LD Hub reveal an overlap with cogni-
tive traits, education, eyesight, chronotype,
lifestyle, well-being, psychiatric disorders,
pain, physical health and exercise, and socio-
economic status. A subset of representative
traits is shown; 143 traits showed significant
associations with the multivariate GenLang
results, and 245 traits showed significant cor-
relations with full-scale IQ, of which 135 traits
overlap after correction for multiple testing
for 535 × 2 traits (P < 4.67 × 10�5). Significant
correlations are shown in dark colors; nonsig-
nificant correlations are in light colors. Full
results can be found in Dataset S13. UKBB: UK
Biobank, GCSE: General Certificate of Second-
ary Education, NVQ: National Vocational Quali-
fication, HND: Higher National Diploma, HNC:
Higher National Certificate, CSE: Certificate of
Secondary Education, PGC: Psychiatric Geno-
mics Consortium, BMI: body mass index, SES:
socioeconomic status. Genetic correlation (rg)
is presented as a dot, and error bars indicate
the SE.
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measures in the Avon Longitudinal Study of Parents and Chil-
dren (ALSPAC) cohort, which demonstrated a shared genetic
factor accounting almost fully for the genetic variance in
literacy-related phenotypes but for only 53% of that in non-
word repetition (57). The 23andMe GWAS on self-reported
dyslexia further shows the existence of effects on reading ability
that are independent of IQ; of 42 genome-wide significant
loci in that study, less than half had previously been associated
with cognitive ability or educational attainment in prior high-
powered investigations (50). Overall, our work thus enhances
understanding of not only the overlaps but also, the distinctions
between different reading-/language-related traits and more gen-
eral cognitive abilities.
Further evidence of differences in trait etiology between the

five reading-/language-related traits was observed in our genetic
correlation analysis with GWAS results of components (identified
via decomposition analysis) from school grades in the Danish
iPSYCH cohort (20) and with results of a GWAS by subtraction
analysis of educational attainment and cognitive performance
(19). Higher scores on phoneme awareness and spelling appear to
be genetically correlated with better performance in written than
in oral examinations. This may reflect the greater importance of
phoneme awareness and spelling for proficient writing than for
oral language. Interestingly, word and nonword reading skills
were associated with better performance in language than
mathematics but not with better performance in written than
oral language. Such findings may offer further proof that key
reading skills, especially those involved in decoding as assessed
in our GWAS meta-analyses, originate from oral language
skills (58). “Component 4,” corresponding to relatively better
performance in Danish (the native language of the participants in
that study) as compared with performance in English, showed
negative genetic correlations with our GenLang nonword
repetition measure, possibly reflecting the particular importance
of verbal short-term memory in second-language learning (59,
60). The results of the GWAS by subtraction, previously
proposed to represent so-called “noncognitive” abilities related to
educational attainment, such as motivation, curiosity, and
persistence, were genetically correlated with word and nonword
reading as well as nonword repetition in GenLang. Of note,
genetic correlation analyses may be influenced by genetic nurture,
the process whereby DNA variants of the parents affect
phenotypic outcomes in their children (61). Genetic variants
relating to the socioeconomic status of the family may, for
example, be involved, as was recently found for cognitive traits
(62). Future investigations that include information about
nontransmitted alleles (63) and/or data from siblings (62) may
help to disentangle pleiotropy from genetic nurture.
Human abilities to process spoken and written language depend

on an array of distributed brain circuits (28, 29, 64–66). We per-
formed genetic correlation analyses of our multivariate GenLang
GWAS with summary statistics from 58 MRI-based neuroanatom-
ical phenotypes chosen because they concerned brain areas and/or
tracts with known links to language processing (28, 29, 65, 66).
We identified a significant genetic correlation with cortical surface
area of the banks of the STS on the left hemisphere. The STS is a
region where the processing of spoken and written language con-
verges, in between modality-specific preprocessing and language
comprehension (33–36). A broad range of language-related func-
tions has been previously linked with the left STS through (meta-
analyses of) functional MRI and positron emission tomography
studies, including those essential for the reading- and language-
related traits included in the GWAS meta-analyses: sublexical proc-
essing of speech (67, 68) and representation of phonological word

forms (69). The importance of this brain area for reading-related
traits is also evident from a meta-analysis of structural MRI studies
that found lower gray matter volume in the left STS related to
reading disability and poor reading comprehension (70). Thus,
findings from the genetic correlation analysis are consistent with
the role of the STS as a hub where the processing of different lan-
guage modalities gets integrated as well as the lateralization of
such functions. Note, however, that while our work supports the
existence of shared genetic factors influencing both left STS sur-
face area and psychometric measures of reading-/language-related
skills, it does not inform about potential causal relationships or
direction of effects, nor does it identify which particular molecular
mechanisms may be involved.

Capacities for acquiring spoken and written language appear
unique to our species, building on underlying skills that emerged on
the lineage leading to modern humans, but evolutionary accounts
remain subject to considerable debate (37, 38). To explore whether
GWAS data could give insights in this area, we used heritability par-
titioning to analyze five annotations representing different time
frames and aspects of human evolution. Archaic introgression
deserts, defined as genomic regions that are significantly depleted of
Neanderthal ancestry, were enriched for genetic variants showing
associations in our multivariate GenLang GWAS. Such regions are
thought to correspond to genomic loci that were intolerant to the
gene flow from Neanderthal populations into H. sapiens, which
took place through admixture events around 50,000 to 60,000 y
ago (41). These loci are enriched for conserved and functional geno-
mic elements: promoters and regions conserved in primates (71)
and enhancers active in many tissues as well as those specific for
expression in fetal brain and muscle (72). Of all regulatory regions
in archaic deserts, brain enhancers show signs of the most stringent
purifying selection against introgressed Neanderthal variation. This
evidence of conservation and selection indicates that archaic deserts
mark parts of the genome where variation has a high probability of
deleterious consequence (72). Enriched heritability for reading-/lan-
guage-related traits in archaic deserts seems broadly consistent with
differences between Neanderthals andH. sapiens in evolutionary tra-
jectories for language emergence. However, analyses of this kind are
only indirectly informative and cannot pinpoint any specific time
frame of human evolution during which genetic variants associated
with reading- and language-related traits were introduced. Investiga-
tions that further integrate data on reading-/language-related genetic
signals and evolutionary annotations of hominin genomes would be
warranted to shed further light on these complex questions.

Regarding functional implications of our findings, heritability
partitioning of the multivariate GenLang GWAS results identified
enrichment in enhancer regions present in fetal brain tissue and
the adult germinal matrix. The enhancer regions of the germinal
matrix are highly similar to those of fetal brain tissues and not the
other adult brain tissues we studied, likely reflecting the neural
stem cell population present in that tissue (73). In these analyses,
there was no specific association with one particular brain cell
type. However, follow-up work with MAGMA using single-cell
RNA-sequencing data from fetal, embryonic, and adult brain
uncovered a significant association with fetal neurons from the red
nucleus, which may relate to the more adult state of these neurons
compared with the other cell types in the fetal dataset (74). The
MAGMA analysis could not be used to test for replication of the
association with (fetal) brain tissue of the LDSC heritability parti-
tioning, as results in this case are corrected for the association with
the average expression of the dataset (22, 42), and the datasets
with fetal data only included brain samples.

Our findings prompt a major reevaluation of prior literature
on genetic associations with reading and language traits, especially
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with regard to candidate gene studies. The large-scale GWAS
meta-analysis results made it possible to robustly and systemati-
cally investigate evidence for association of previously reported
candidate SNPs/genes and suggestive genome-wide screening
results from prior studies of reading-/language-related traits and
disorders. Of the 54 candidate SNPs and 20 candidate genes that
we assessed (none of which met genome-wide significance), only
DCDC2 yielded an association that survived correction for multi-
ple testing in the context of targeted replications. This locus
showed association only at the gene-based level and with one
trait: nonword reading. Some previously reported associations in
the literature could reflect the specific language, phenotype, or
recruitment procedure of the cohort in which the gene or variant
was investigated and/or differences between contributions of
common and rare variation at a locus of interest. Yet, the lack of
support here also suggests that false-positive results have made an
impact on the field, most likely related to limited sample size in
prior reports, which is known to elevate the risk of type 1 error
(75). Regarding validation of findings from the previous more
limited GWAS of quantitative reading-/language-related traits,
our large-scale meta-analysis identified association with spelling
for the SNP rs1555839, previously found to be associated with
rapid automatized naming and rapid alternating stimulus (7).
Overall, these results highlight the need for a genome-wide per-
spective and the importance of large well-powered samples if we
are to obtain reliable insights into the role of common genetic
variants in language- and reading-related traits.
Reading- and language-related phenotypes pose special chal-

lenges for scaling up genetic analysis since psychometric assess-
ments can be labor intensive to administer and score and
because of the heterogeneity introduced by differences in assess-
ment tools, ages, populations, and languages, among other
factors (2, 76). One-item questions have enabled increases in
sample size for GWAS of a wide range of traits and disorders,
especially when available through large resources, such as the UK
Biobank. As discussed above, a single self-report item about dys-
lexia diagnosis enabled an informative GWAS in the 23andMe
research cohort (50). However, no validated questions have yet
been described that adequately capture interindividual variability
in reading and language skills in the normal range, which still
requires administration of psychometric tests. The GenLang Con-
sortium was established as an international effort by multiple
research teams with the aims of overcoming such difficulties
through a range of strategies and enabling large-scale well-powered
investigations of genomic underpinnings of these important traits.
This first wave of analysis from GenLang represents the largest

GWAS meta-analyses for direct quantitative assessments of reading-
and language-related abilities to date, including 22 cohorts with
data available for at least one of the phenotypes. Nonetheless,
although substantially increased over prior work in this area, sam-
ple sizes may still be considered relatively modest compared with
the state of the art for genetic association analyses of other com-
plex traits. While they captured a significant proportion of the
genetic variation underlying each phenotype, yielding several
insights into the associated biology, detection of individual
genome-wide significant loci was still limited. In addition, when
sufficiently large datasets become available, it would be valuable to
validate the genetic correlation and heritability partitioning results
in additional independent datasets. A number of phenotypes of
interest, including those that tap into syntactic skills or that involve
different modalities such as sign languages, could not (yet) be pur-
sued due to inadequate sample sizes, even when combining data
available from multiple cohorts. We note that despite our best
efforts at harmonizing the included datasets and limited evidence

of heterogeneity in the results based on Cochran Q statistics,
LDSC intercepts, and genetic correlations between subsets of the
data, we cannot fully exclude that heterogeneity is introduced by
the inclusion of data from different assessment tools, languages,
and ages. The choice of assessment tools for future collection of
reading- and language-related phenotypes for genomic studies, to
increase the sample sizes of these GWAS meta-analyses and also, to
collect additional language-related phenotypes, should, therefore,
be based at least partially on optimal matching with existing data.
At the same time, we should invest in facilitating and simplifying
the collection of language-related phenotypes, in part by developing
and optimizing test batteries that could be reliably administered
online in web/app-based settings. These are major areas of focus
for the GenLang Consortium moving forward.

In summary, our GWAS meta-analyses of five reading- and
language-related phenotypes in sample sizes of up to ∼34,000
participants demonstrated significant SNP heritability for all
traits and identified genome-wide significant associations with
word reading on chromosome 1. Structural equation models
revealed a single factor accounting for much of the genetic
architecture underlying word reading, nonword reading, spell-
ing, and phoneme awareness, prompting a multivariate GWAS
analysis. The multivariate results were genetically correlated
with cortical surface area of the banks of the left STS, a brain
region where the processing of spoken and written language
comes together. Partitioned heritability analyses showed enrich-
ments in fetal brain enhancers, highlighting links to early brain
development, and in archaic deserts depleted of Neanderthal
ancestry, suggesting that genomic regions associated with
emerging language-related skills in H. sapiens may have been
intolerant to gene flow from other archaic hominins. These
efforts by GenLang open up avenues for deciphering the bio-
logical underpinnings of spoken and written language.

Materials and Methods

A more detailed version of the methods is provided in SI Appendix, Extended
Methods.

Study Cohorts. The meta-analyses included GWAS summary statistics from 22
independent cohorts (Dataset S1). Different measures for the reading- and
language-related traits had been assessed in each cohort and could be included
in the GWAS meta-analyses (SI Appendix, Supplemental Notes has details of
each measure, and Dataset S1 has an overview of the included measures and
sample sizes for each cohort). Data from children, adolescents, and young adults
aged 5 to 26 y were included. The phenotype data were standardized and then,
adjusted for covariates (age, age2, sex, and ancestry principal components
[PCs]); the genotype data were subjected to stringent quality control according
to a detailed analysis plan following standard procedures for GWAS and then
imputed using the Haplotype Reference Consortium version 1.1 panel or the
1000 Genomes Project Phase 3 reference panel (Dataset S2). Univariate GWAS
analyses were performed using linear regression methods with the imputed addi-
tive genotype dosages for the full dataset and for males and females separately.

Meta-Analyses. The summary statistics for each GWAS cohort for each trait
were subjected to stringent quality control measures (SNPs were excluded if
imputation quality scores were <0.7, minor allele frequency was <0.01, and/or
minor allele count was ≤10). Meta-analyses of the univariate GWAS results were
performed with METAL (version March 2011), with effect size estimates weighted
using the inverse of the corresponding SEs. For the follow-up analyses with
LDSC, separate meta-analyses without genomic control correction (77) were per-
formed using only individuals of European ancestry as determined by ancestry
PCs. To accommodate the multiple testing burden present in performing separate
meta-analyses for the five reading- and language-related traits while taking into
account the high phenotypic correlations between them, we calculated the effec-
tive number of independent variables (VeffLi) from the meta-analysis results using
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PhenoSpD (78) (v1.0.0). The Bonferroni-corrected genome-wide significant P value
threshold was determined at 2.33 × 10�8 (5 × 10�8/2.15 independent traits).

GenomicSEM. To investigate the high genetic correlations between the sum-
mary statistics of the five reading- and language-related traits and with cognitive
performance (18) and educational attainment (18), we used GenomicSEM (ver-
sion 0.03) (21) to model the joint genetic architecture. We used a two-step
approach. First, exploratory factor analysis for models with one to four factors
was run; second, the model that explained the largest part of the variance in
data was chosen for follow-up with confirmatory factor analysis in GenomicSEM.
Different models were tested based on the exploratory three-factor model, with
different factor loadings based on strength thresholds between 0.1 and 0.5, and
the optimal model was chosen based on several indices of model fit.

Multivariate GWAS Analysis. A multivariate GWAS was performed on the uni-
variate GWAS summary statistics of the four traits with the highest genetic corre-
lations (word reading, nonword reading, spelling, and phoneme awareness)
using MTAG (v1.0.8) (25).

Heritability and Genetic Correlation. LDSC (77) (v1.0.0) was used to esti-
mate genomic inflation and SNP-based heritability of the meta-analysis results
and to investigate genetic correlations (13). All analyses were based on Hap-
Map 3 SNPs only, and precalculated LD scores from the European 1000
Genomes reference cohort were used. GWAS summary statistics for genetic cor-
relation analyses with cognitive traits were obtained from the Social Science
Genetic Association Consortium (18) and the GWAS catalog (79) and through
collaboration with the iPSYCH Consortium (20). Publicly available GWAS summary
statistics of neuroimaging traits were obtained via the Oxford Brain Imaging Genet-
ics Server (30); a total of 58 neuroanatomical phenotypes were selected based on
their relevance to language processing. PhenoSpD (78) was used to calculate the
effective number of independent variables (VeffLi) to inform the multiple testing
correction of the genetic correlation analyses with the cognitive and brain imaging
phenotypes. Following our targeted analysis of brain imaging traits, genetic corre-
lations were estimated between the MTAG results and summary statistics of 20
cognitive, education, neurological, psychiatric, and sleeping-related traits and all
515 UK Biobank traits available in LD Hub (80) (v1.9.3).

Functional Mapping and Annotation of GWAS Meta-Analysis Results.

The FUMA platform (version 1.3.6a) (43) was used to annotate the genome-wide
significant variants.

Gene and Gene-Set Analysis. MAGMA (22) (version 1.08) gene analysis in
FUMA was used to calculate gene-based P values and for gene-property analy-
ses, to study relationships with tissue-specific and cell type–specific gene expres-
sion patterns. Several bulk RNA-sequencing and single-cell RNA-sequencing
datasets of brain samples were assessed through FUMA (43).

Partitioning Heritability of Chromatin and Evolutionary Signatures.

LDSC heritability partitioning (39) was used to estimate the enrichment of herita-
bility of the MTAG results in annotations reflecting evolutionary signatures from
different periods along the lineage leading to modern humans, ranging from
around 50,000 y ago back to 30 Mya [adapting a pipeline recently published by
Tilot et al. (40)]. In addition, LDSC heritability partitioning was used to study the
association with several annotations reflecting tissue-specific chromatin modifica-
tion patterns. Annotations were based on data from the Roadmap Epigenomics
project and Enhancing GTEx project (ENTEx) processed by Finucane et al. (81).

Data Availability. The full GWAS summary statistics (for word reading, non-
word reading, spelling, phoneme awareness, nonword repetition, performance
IQ, each available as "full" and "European subset" datasets) are available
through the GWAS Catalog (accession nos. GCST90104462–GCST90104472) and
the website of the GenLang network (http://www.genlang.org/) (82, 83). Code
used to perform the meta-analysis and follow-up analyses is available in GitLab
(https://gitlab.gwdg.de/else.eising/genlang_quantitative_trait_gwasma) (84).
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